Dispersion characteristics of guided waves in functionally graded anisotropic micro/nano-plates based on the modified couple stress theory

نویسندگان

چکیده

In this paper, the acoustic wave motion characteristics of Lamb and SH waves in functionally graded (FG) anisotropic micro/nano-plates are studied based on modified couple stress theory. A higher efficient computational approach, extended Legendre orthogonal polynomial method (LOPM) is utilized to deduce solving process. This does not need solve FG hierarchically, which provides a more realistic analysis model for has high efficiency. Simultaneously, solutions global matrix (GMM) also deduced verify correctness method. Furthermore, effects size material gradient detail. Numerical results show that effect causes wrinkles dispersion curves, characteristic changes amplitude range wrinkles. For waves, length scale parameter Lx increases cut-off frequency but change overall trend curve; contrary, Lz curve an upward trend.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isogeometric analysis for functionally graded microplates based on modified couple stress theory

Analysis of static bending, free vibration and buckling behaviours of functionally graded microplates is investigated in this study. The main idea is to use the isogeometric analysis in associated with novel four-variable refined plate theory and quasi-3D theory. More importantly, the modified couple stress theory with only one material length scale parameter is employed to effectively capture ...

متن کامل

The Effect of Modified Couple Stress Theory on Buckling and Vibration Analysis of Functionally Graded Double-Layer Boron Nitride Piezoelectric Plate Based on CPT

In this article, the effect of size-dependent on the buckling and vibration analysis of functionally graded (FG) double-layer boron nitride plate based on classical plate theory (CPT) under electro-thermo-mechanical loadings which is surrounded by elastic foundation is examined. This subject is developed using modified couple stress theory. Using Hamilton's principle, the governing equations of...

متن کامل

Free Vibration Analysis of Size-Dependent, Functionally Graded, Rectangular Nano/Micro-plates based on Modified Nonlinear Couple Stress Shear Deformation Plate Theories

In the present study, a vibration analysis of functionally graded rectangular nano-/microplates was considered based on modified nonlinear coupled stress exponential and trigonometric shear deformation plate theories. Modified coupled stress theory is a non-classical continuum mechanics theory. In this theory, a material-length scale parameter is applied to account for the effect of nanostructu...

متن کامل

Free Vibrations Analysis of Functionally Graded Rectangular Nano-plates based on Nonlocal Exponential Shear Deformation Theory

In the present study the free vibration analysis of the functionally graded rectangular nanoplates is investigated. The nonlocal elasticity theory based on the exponential shear deformation theory has been used to obtain the natural frequencies of the nanoplate. In exponential shear deformation theory an exponential functions are used in terms of thickness coordinate to include the effect of tr...

متن کامل

Comprehensive Studies on Mechanical Stress Analysis of Functionally Graded Plates

Stress analysis of functionally graded composite plates composed of ceramic, functionally graded material and metal layers is investigated using 3-D finite element method. In FGM layer, material properties are assumed to be varied continuously in the thickness direction according to a simple power law distribution in terms of the volume fraction of a ceramic and metal. The 3-D finite element mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Thin-walled Structures

سال: 2021

ISSN: ['1879-3223', '0263-8231']

DOI: https://doi.org/10.1016/j.tws.2021.107527